skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lebov, Jarrett F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parkhill, Julian (Ed.)
    ABSTRACT RNA transcripts are potential therapeutic targets, yet bacterial transcripts have uncharacterized biodiversity. We developed an algorithm for transcript prediction called tp.py using it to predict transcripts (mRNA and other RNAs) inEscherichia coliK12 and E2348/69 strains (Bacteria:gamma-Proteobacteria),Listeria monocytogenesstrains Scott A and RO15 (Bacteria:Firmicute),Pseudomonas aeruginosastrains SG17M and NN2 strains (Bacteria:gamma-Proteobacteria), andHaloferax volcanii(Archaea:Halobacteria). From >5 millionE. coliK12 and >3 millionE. coliE2348/69 newly generated Oxford Nanopore Technologies direct RNA sequencing reads, 2,487 K12 mRNAs and 1,844 E2348/69 mRNAs were predicted, with the K12 mRNAs containing more than half of the predictedE. coliK12 proteins. While the number of predicted transcripts varied by strain based on the amount of sequence data used, across all strains examined, the predicted average size of the mRNAs was 1.6–1.7 kbp, while the median size of the 5′- and 3′-untranslated regions (UTRs) were 30–90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions were of novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in theE. coliE2348/69LEEpathogenicity islands. We predicted small transcripts in the 100–200 bp range as well as >10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being thenuooperon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, and reproducible method will facilitate the presentation of transcripts, and UTR predictions alongside coding sequences and protein predictions in bacterial genome annotation as important resources for the research community.IMPORTANCEOur understanding of bacterial and archaeal genes and genomes is largely focused on proteins since there have only been limited efforts to describe bacterial/archaeal RNA diversity. This contrasts with studies on the human genome, where transcripts were sequenced prior to the release of the human genome over two decades ago. We developed software for the quick, easy, and reproducible prediction of bacterial and archaeal transcripts from Oxford Nanopore Technologies direct RNA sequencing data. These predictions are urgently needed for more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial pathogens, like those with extreme antimicrobial resistance. 
    more » « less
  2. RNA modifications, such as methylation, can be detected with Oxford Nanopore Technologies direct RNA sequencing. One commonly used tool for detecting 5-methylcytosine (m5C) modifications is Tombo, which uses an “Alternative Model” to detect putative modifications from a single sample. We examined direct RNA sequencing data from diverse taxa including viruses, bacteria, fungi, and animals. The algorithm consistently identified a m5C at the central position of a GCU motif. However, it also identified a m5C in the same motif in fully unmodified in vitro transcribed RNA, suggesting that this is a frequent false prediction. In the absence of further validation, several published predictions of m5C in a GCU context should be reconsidered, including those from human coronavirus and human cerebral organoid samples. 
    more » « less